Subspace Iteration Methods in terms of Matrix Product States
نویسندگان
چکیده
When dealing with quantum many-body systems one is faced with problems growing exponentially in the number of particles to be considered. To overcome this curse of dimensionality one has to consider representation formats which scale only polynomially. Physicists developed concepts like matrix product states (MPS) to represent states of interest and formulated algorithms such as the density matrix renormalization group (DMRG) to find such states. We consider the standard Lanczos algorithm and formulate it for vectors given in the MPS format. It turns out that a restarted version which includes a projection onto the MPS manifold gives the same approximation quality as the well-established DMRG method. Moreover, this variant is more flexible and provides more information about the spectrum.
منابع مشابه
A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملA New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملExplicit Stiffness of Tapered and Monosymmetric i Beam-Columns
A formulation for finite element analysis of tapered and monosymmetric I shaped beam-columns is presented. This is a general way to analyze these types of complex elements. Based upon the formulation, member stiffness matrix is obtained explicitly. The element considered has seven nodal degrees of freedom. In addition, the related stability matrix is found. Numerical studies of the aforementio...
متن کاملInexact Krylov Subspace Methods for Linear Systems
There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming approximation method is necessary to compute it with some prescribed relative precision. In this paper we investigate the effect of an approximately computed matrix-vector product on the convergence and accuracy of several Krylov subspace solvers. The obtained insi...
متن کاملInexact Krylov subspace methods for linear systems by
There is a class of linear problems for which the computation of the matrix-vector product is very expensive since a time consuming approximation method is necessary to compute it with some prescribed relative precision. In this paper we investigate the effect of an approximately computed matrix-vector product on the convergence and accuracy of several Krylov subspace solvers. The obtained insi...
متن کامل